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High Energy Charged Particle Optics Computer Programs
David C. Carey

The computer proérams TRANSPORT and TURTLE are described,
with svecial emphasis on recent developments. TRANSPORT is a
general matrix evaluation and fitting program. First and second-
order transfer matrix elements, including those contributing
‘to time-of-flight differences can.ﬁe evaluated., Matrix elements
of both corders can be fit, separately or simultaneously. Floor
coordinates of the beam line may be calculated and included in
any fits. Tables of results of misalionments, including effects
of bilinear terms can be produced. Fringe fields and pole face
rotation ancgles of bending magnets may be included and also
adjusted automatically during the fitting process to produce
rectangular magnets. A great variety of output options is
available,

TURTLE is a Monte Carlo program used to simulate heam line
performance. It includes second-order terms and aperture
constraints. Replacable subroutines allow an unlimited variety
of input beam distributions, scattering algorithms, wvariables
which can be histogrammed, and aperture shapes. Histograms of
beam loss can also be produced. Rectangular zero-gradient bending
magrnets with proper circular trajectories, sagitta offsets, pole
face rotation angles, and aperture constraints can be included.
The effect of multipole components of guadrupoles up to 40 pole

can be evaluated.



Introduction

A complete design of a beam line for transmission of charged
particles involves two stages. First, one must determine ceritain
gquantifiable characteristics that the beam line must possess,
and produce a design which optimizes the conformance to these
characteristics. Second, one must evaluate the performance of
the system produced. The iatter might involve a determination

of beam profiles, acceptances, and effects of magnet imperfections.

We describe here two computer programs developed to achieve
the two purposes described above. A beam design, including all
element spacings and magnetic fields, in produced using the
program TRANSPORT, Once this design is achieved, it may be
simulated using the Monte Carlo Progranm TURTLE.2 The two programs
use the same input data format making the transition from one
to another quite simple.

Both programs are described in detail in their respective

manualsl’3,

and, to some extent, in the published literature.
Their use is sufficiently widespread so there is no point in
giving a Aetailed description of either. For comoleteness, we
give a short description of each, with a greater elaboration of
recent developments. Some of the more recent developments have

been or will be published elsewhere. Others will appear only in

this article.



TRANSPORT

TRANSPORT is a general matrix evaluation and fitting
program. It can evaluate various matrices which represent the
transmission of particles through a beam line, and vary the
phvsical parameters of the beam line to fit elements of such
matrices to desired values. A schematic illustration of a
beam line is shown in figure 1.

TRANSPORT considers a beam line to be comprised of a set
of magnetic elements placed seguentially at intervals along
‘an assumed reference trajectory. The reference trajectory
is taken to be a path of a charged particle passing throuch
idealized magnets (no fringing fields) and having the central
design momentum of the beam line. Therefoze, through a bending
magnet, the reference trajectory is the arc of a circle, while
throuch all other magnetic elements it is a straicht line.

The input data to TRANSPORT contain the initial floor coordinates
and direction of the reference trajectory, and the seguence of
elements comprising the beam line. The elements include both
drift spaces and magnetic elements, which are specified hy their
lengths, magnetic fields, and other relevant quantities.
TRANSPORT can then calculate the floor coordinates of the
reference trajectory at the interface between any two elements.

A local coordinate system is attached to each point on

the reference trajectory. As a particle moves down the beam



line, its transverse position and direction of motion afe
referred to this local coordinate system. 2n illustration
of this leocal cocordinate system is shown in figure 2. A six
component vector is used to describe a particle trajectory

at a given position along the beam line, i.e.

(1)

= 8 W

where:
" x = the horizontal displacement of the rav with respect

to the reference trajecteory

6 = the angle the ray makes is the horizontal rlane with
the reference trajectory

v = the vertical displacement of the ray with respect to
the reference trajectory

¢ = the verticle angle the ray makes with the reference
trajectory

£ = the longitudinal separation between the ray and the
central trajectory

8§ = Ap/p is the fractional momentum deviation ¢f the ray

from that of the reference trajectory.



The value of this wvector at any location is the beam
line may be determined from its initial value by means of a

transfer matrix R, so that
Z(1) = R X(0) (2}

where the arquments (0) and (1) indicate the initial location
and the peoint of interest, respectiwely. The six by six
matrix R takes on a simple form if the system has midplane
symmetry, whére all the magnetic votentials are odd in the

vertical coordinate. Then we have
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In all cases, whether or not we have midplane symmetry, all
entries in the fifth column, except the fifth, and all entries
in the sixth row, except the sixth, will be zero. Thus nothing
affects the momentum, and the longitudinal separation affects
‘mo transverse coordinate. TRANSPORT can print the transfer
matrix at any or all locations in matrix format or in a single
line which contains only those elements in the first four rows

which survive midplane symmetry.



The matrix formalism can be regarded as the first term
in a Taylor's series and extended to second order via the
equation

X (1) = ) RX 01 ¢ ) T %, (0) (0) (4)

3 ik
The second-order matrix elements which contribute to the
transverse coordinates have been calculated by Brown,4 and
have previously been published. The terms which contribute
to longitudinal separation have heen derived by several
interested parties, and have beens or will be published.6

In accelerator and beam transport systems, the behavior
of an individual particle is coften of less concern than is
the behavior of a bundle of particles (the beam), of which
the individual particle is a member. B2An extension of the
matrix algebra of ec. (2) provides a convenient means for
defining and manipulating this beam. TRANSPORT assumes that
the beam may be correctly represented in phase space by an
ellipsoid in the six-dimensional coordinate system described
above. Particles in a beam are assumed to occupy the volume
enclosed by the ellipsoid, each point representing a possible
ray. The sum total of_all phase points, the phase space volume,
is commonly referred to as thé "phase space"” occupied by the
beam. A diagram of a two-dimensional cross section of this

six-dimensional ellipsoid is shown in figure 3.



The eguation of the six-dimensional ellipsoid is
X'c "X =1 (5)

where o is the beam or sigma matrix., some of whose elements
are found in the illustration. The correlation terms r are

given in terms of the off-diagonal elements of o by

o. .
ri. = —-35L—- (6)
J Vo, .d. .
ii~33

The ellipse at one location in the beam line can be trans formed
into one at another location bv means of the transfer matrix
between the two locations, so that
94 = ZRikRjz"m (0) (7
k
An alternate interpretation of the sigma matrix is that
is provides the second moments of a six-dimensional Gaussian

distribution. The fourth moments can then he calculated and

second order terms taken into account. The sigma matrix now

transforms as

% (1) = ZTijkojk(D) (8)

T
o;5(1) = D RiyRypTiy (0 + 2 Z(Z Ty 1% (0) (Z T men (0



The distribution is no longer an ellipsoid and the centroid
at the final position is no longer the image of the centroid
at the initial position. Nevertheless, the sigma matrix does
provide an estimate of the beam Aimensions and is ¢f use in
determining the magnitude of the net contribution of second-
order aberrations. The second order transformation of the
sigma matrix has been described elsewhere.7

A nunmber of the physical parameters describing the
magnets or their locations or crientations may be varied by
the program. & list of elements which are physical or hawve
parameters which may ke varied is giwven in table 1. BAlmost
all items require no explanation. The single possible
exception is a bending m&gnet, whose configuration‘can
sometimes be aquite complicated.

A bend magnet element specifies a sector bend magnet
where the field boundaries are infinitelwv sharp and form a
pléne percendicular to the reference trajectory at the input
and output faces of the magnet. A field bhcundary making an
angle with the perpendicular plane is specified as a separate
element which precedes or follows +he magnet. The rotation
of the field koundary acts as a guadrupole component which
can affect the first-order transfer matrix. A quadratic
variation of the central field of a bend =magnet, or a curvature
of its entrance or exit field boundaries can contribute a

sextupole component which will affect the second-order transfer



matrix. h-ﬂiaérém of a general bending magnet is shown in
figure 4.

The values of the parameters to be varied will be found
which will satisfv any user-imposed constraints. A variety
of constraints is available and a list is given in table II.
Any assortment of constraints can be fit simultanecusly by
TRANSPORT, providing the configuration is physically possible.
First- and second-order constraints may be mixed and all
parameters déscribing magnetic slements or their intended
location or orientation may be varied in either a first- or
second-order run. The only exceptions are that parameters
which affect only the second-order characteristics of a beam
may not be varied and second-order constraints may not be
imposed in a first-order run. Parameters directly describing
the beam ellipse and misalignment parameters may be varied
only in first order.

The misalignment tolerances of the magnets in a beam line
can also be determined by TRANSPORT. The corplete theorv of
magnet alignment tolerances has been given elsewhere8 and will
be descriﬁed briefly here. A picture of a misaligned bending
magnet is shown in figure 5.

The most immediate effect of the misaliqnment of a
magnetic element is a displacement of the reference trajectory.
This would add a term to equation (2) which was not dependent

on the values of the initial coordinates of the trajectory.
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However, manv possible misalignments, such as the rotation of
a quadrupole about its axis would not be included in such a
term. We therefore add a second term which is bilinear in

the extent of the misalignment and arrive at
X(1) = RX{0} + Fm + GX(O0)m {9)
where m is a vector of misalignment parameters given by

§x

ex
Sy
m = (10)

%

5z

\azt

The six components indicate displacements and rotations with
respect to the three axes of the reference coordinate svstem
" at the entrance face of the magnet.

In TRANSPORT a number of possible elements or portions
of the beam line may be misaligned. An individual element or
section of a beam line can be misalicgned, and misalignments
can be nexted. Also TRANSPORT can be instructed to misalign
all guadrupcles and/or bending magnets by a given amount.

The effects of misalignments are shown in the beam
matrix. The misalignments may be of two types. A known

misalignment of a magnet will produce a displacement of the
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beam centroid. The new beam centroid and sigma matrix are

given by
X="Fn

c{l) = Rc(O}RT + Gc(O)mRT + Rc(O)mTGT + Go(O)anGT (1L)

An uncertainty in .position will not affect. the beam centroid,

but:will pfoduce an alterea beam ellipse given by

0(1) = Ro(O)R" + F<mmi>F® + Go(0)<mm >G (12)

The matrix <mmT> represents an ellipscid of uncertainty in
the six-dimensional space of misalignment parameters. II the
misalignments are uncorrelated this ellipsoid will be upright.
If the initial dimensions of the beam ellipse are zero, then
the beam matrix will represent the envelope of possible locations
of the reference trajectory.

The results of the misaliqnments may be represented in
either the beam matrix or in a special misalignment table.
If the beam matrix is used, the results of the misalignment
of all magnets in all coordinates will be lumped together,
to give #n aggregate result., The misalignment parameters
may then be fit via constraints on the beam matrix. The
misalignment table consists of altered facsimiles of the beam
matrix, reproduced a number of times. If the misalignment
table is used, then the results of misaligning each magnet in

each coordinate can be shown individually.
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TURTLE

TURTLE is a Monte Carlo program uséd to simulate beam
iine performance. It can produce histograms and scatter plots
showing beam profiles and any distribution or correlation
of any physical quantity. It also includes second-order and
many higher-order terms and aperture constraints.

The input deck is the same as that used for TRANSPORT.
Three changes are reguired to make it into a deck for running
TURTLE. First, the computer must be instructed to run TURTLE
instead of TRANSPORT. Second, the TRANSPORT indicator card
indicating whether the problem is new or a continuation of an
old problem is changed tc the number of rays to be run throuch
the system. Third, the histogram requests must be inserted.

The transformations thrbugh ‘quadrupoles, sextupoles, and
solencids are done individually for each momentum. The geometric
effects on trajectories are limited to second ordér. For a
general bending magnet, a second-order tranﬁformation in both
chromatic and geometric effects is used. The pole face
rotations with their accompanying fringe fields, and the body
of the bending magnet are all included in a single second-order
trans formation.

If the field gradient of a magnet is zero, then the
trajectory of a particle through a magnet will be the arc of
a circle. A rectangular magnet with a sample circu;ar

trajectory is shown in figure 6. If ¢ is the bend angle of
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a sector bending magnet, then the output coordinates expressed

in terms of the input ccordinates are

.2 .
sin“8 _sin o
©

; = si - —_— - sin a ;
sin Bl = gin eo cos T 7 cos eo xo S + T+ 3 sin o
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)
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cos 8

Yi = yé cos 91 (13)

The quantity L is the length of the bend magnet, p the radius
of curvature of the individual trajectory, and eo the inverse
tangent of xé. For a rectangular zero-gradient bending magnet,
the effect of the pole face rotations is included via a second-
order transfer matrix. Also for a rectangular bending magnet,
the proper sagitta offset and corresponding aperture limitations
can be calculated automatically.

The effect of non-linearities in guadrupcle fields may
also be calculated automatically. The magnitude of the error

field is represented by a multipole expansion
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ht n-1
B, = S: B IE sin{(n—l)e - an] (14)
n=1 )
ot n-1
B, = v B.o (i} sin[(n—l)e - an]
n=1

The mathematical procedure for calculating the effect of the
error field has heen described e15ewhere.9 Briefly, the
trajectory is transformed to the longitudinal center of the
quadrupole by an ordinary transfer matrix. At that point it
is perturbed by an integral of the multipole field, where the
strengths of the conponents are determined from the magnitude
of the ray at the longitudinal midpoint. Then it is transformed
to the end of the quadruéole. Multipoles uwp to the 40-pole
may bé included.
Replacable subroutines allow a variety of input phase
space distributions, scattering distributions, slit shapes, and
histogrammable variables. The normal phase space is rectangular
in x vs, x' or y vs. y', but circular in x vs. ¥y or x' vs. y'.
It is also uniform in momentum. Alternate distributions
representing particle production models have been used.
Scattering may be introduced at any point in the beam
line. The default distribution is the same as for the input
phase space. The subroutine producing the scattering may be
replaced by one giving a Gaussian or other dgsired Aistribution,

Slits of any size and shape can also be inserted anvwhere
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in the beam line. The program allows a slit in any of the
trajectory coordinates. A replacable subroutine allows any
other slit that can be formulated mathematically. 'This feature
is useful in defining irregularly shaped apertures of magnets.
Histograms and scatter plots of trajectory coordinates
may also be produced. A histogram of the longitudinal position
of beam loss is also available. Replacable subroutines allow
calculation of any quantity which is related to the trajectory
coordinates for inclusion in histograms or scatter plots.
Examples micht be kinematic variables associated with a particular
reaction, the angle of a cone of Cerenkov light, or a reconstruction
of an initial trajectory coordinate from chamber readings. The
scatter plot may contain any two variables, which need not occur
at the same location in the beam line.
Histograms and scatter plots may be flagged. A trajectory
coordinate will not be entered into the histogram unless the
ray remains in the beam when the flag is encountered. This

feature is especially useful for determining the effective

acceptance of a beam line.
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Element

-Initial beam ellipse

Pole face rotation

Drift space

Bend magnet

Quadrupole

Initial beam centroid shift
Alignment tolerance
Accelerator

Arbitrary Matrix

Initial floor coordinates
BM sextupole components
Sextupole

Solencid

Coordinate rotation

Table I.
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Can_Vary

All dimensions

Angle of rotatiocn

Length

Length, field, field gradient
Length, pole tip field

All dimensions

All dimensions

All elements

All positions and angles
Strength

Field

Iength, field

Angle of rotation

Physical and Variable TRANSPORT Elements
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Zeroc'th QOrder

Total system length

Floor coordinates ~- three positions and three angles
First Order

Transﬁer matrix element -- Rij

Beam size in any coordinate

Beam matrix element -- o,

ij
Beam correlation matrix element -- rij = aij/JGiinj
First moments of the beam -- centroid
Phase advance -- Trace of R matrix in one plane

Second Order
Trans fer matrix element - Tijk

Second order contributions to beam size in any coordinate

Table II. Fitting Constraints
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Figure Captions

B charged particle beam line, with the reference
trajectory shown.

The local coordinate svstem for determining the
local coordinates of a particle trajectory.

A two-dimensional beam phase ellipse.

Field boundaries for a ceneral bending magnet.
Perfectly aligned and misaligned bending magnets.
A zero-gradient rectangular bending magnet. The
reference trajectory and another sample particle

trajectory are shown.






Figure 2.
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